José Horta a soutenu sa thèse intitulée « Paradigmes et architectures innovantes pour l’avenir des réseaux
électriques de distribution soutenant la transition énergétique » le 16 avril 2018 où il a obtenu le grade de « Docteur de Télécom ParisTech » avec la mention
Très honorable. La soutenance a eu lieu devant le jury composé de :
- M. Georg CARLE, Professeur, TU München, Allemagne – Rapporteur
- M. Georges KARINIOTAKIS, Professeur, MINES ParisTech, France – Rapporteur
- Mme. Ana BUŠIĆ, Chargé de Recherche, Inria, France – Examinatrice
- M. Gérard MEMMI, Professeur, Télécom ParisTech, France – Examinateur
- M. Philippe FUTTERSACK, Chef de groupe, EDF R&D, France – Invité
- M. Daniel KOFMAN, Professeur, Télécom ParisTech, France – Directeur de thèse
- M. David MENGA, Chercheur, EDF R&D, France – Encadrant industriel
Résumé de la thèse
Les futurs réseaux de distribution d’électricité devront héberger une part importante et croissante de sources d’énergies renouvelables intermittentes. De plus, ils devront faire face à des nouvelles variations des courbes de charge, dues notamment à une part croissante de véhicules électriques. Ces tendances induisent le besoin de nouveaux paradigmes et architectures d’exploitation du réseau de distribution, afin de fiabiliser les réseaux et assurer la qualité de fourniture d’électricité. Par ailleurs, ces nouveaux paradigmes vont permettre le développement des services innovants.
D’un côté, les gestionnaires de réseau s’appuieront de plus en plus sur des flexibilités fournies par des ressources énergétiques distribuées (flexibilités de consommation, stockage électrique, modulation des sources d’énergie) à cause de son potentiellement meilleur rapport coût-efficacité par rapport au renforcement des infrastructures. D’un autre côté, les consommateurs deviendront progressivement des prosumers (acteurs de leur consommation d’énergie) qui joueront un rôle actif dans la gestion de l’énergie des réseaux intelligents, en exploitant la flexibilité de certaines des équipements de leur logement (appareils électroménagers, batteries et panneaux solaires) pour moduler leur courbe de charge. L’Internet des Objets est un outil essentiel pour permettre aux logements de jouer un rôle actif, car il a poussé une nouvelle vague d’appareils connectés à la Smart Home et de services associés, dont le domaine de l’énergie peut devenir l’une des principales applications.
Dans cette thèse nous proposons une nouvelle architecture capable de favoriser la collaboration entre les acteurs du marché de gros, les gestionnaires de réseau de distribution et les clients finaux, afin de tirer parti des ressources énergétiques distribuées tout en prenant en compte les contraintes des réseaux de distribution. L’architecture est conçue pour fournir des services innovants de gestion de la demande résidentielle, avec un focus particulier sur les services liés à l’autoconsommation individuelle (au niveau d’un logement) et collective (à l’échelle d’un quartier). Dans le cadre de ces objectifs généraux, la thèse apporte trois contributions principales. D’abord, sur la base de l’Internet des Objets et de la technologie blockchain, la thèse fournit les éléments de base pour les futures architectures de
gestion de l’énergie au niveau du réseau de distribution. Ensuite, en focalisant sur les services rendus par de telles architectures, nous proposons un marché intra-journalier au pas horaire pour l’échange local de l’énergie renouvelable entre les logements, associé à un mécanisme d’allocation dynamique des phases afin d’améliorer la qualité de fourniture d’électricité. Finalement, nous proposons un mécanisme de contrôle en temps réel pour l’ajustement des transactions du marché vers des échanges finaux d’électricité qui respectent les restrictions posées par le gestionnaire du réseau électrique.
L’architecture et les mécanismes de gestion de la demande proposés visent à réduire les transits et les pertes et, par conséquent, à augmenter la capacité d’accueil des sources d’énergie renouvelables sur les réseaux de distribution basse tension. Les performances sont évaluées à l’aide de simulations de load flow basées sur des profils de charge réalistes. Elles fournissent des éléments utiles à la conception des futurs systèmes de gestion des réseaux de distribution.