Home Authors Posts by SEIDO LAB

SEIDO LAB

33 POSTS 0 COMMENTS

José Horta, Eitan Altman, Mathieu Caujolle, Daniel Kofman, David Menga

Proc. of the IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), October 2018.
DOI: 10.1109/SmartGridComm.2018.8587495

Abstract: Future electricity distribution grids will host a considerable share of the renewable energy sources needed for enforcing the energy transition. Demand side management mechanisms play a key role in the integration of such renewable energy resources by exploiting the flexibility of elastic loads, generation or electricity storage technologies. In particular, local energy markets enable households to exchange energy with each other while increasing the amount of renewable energy that is consumed locally. Nevertheless, as most ex-ante mechanisms, local market schedules rely on hour-ahead forecasts whose accuracy may be low. In this paper we cope with forecast errors by proposing a game theory approach to model the interactions among prosumers and distribution system operators for the control of electricity flows in real-time. The presented game has an aggregative equilibrium which can be attained in a semi-distributed manner, driving prosumers towards a final exchange of energy with the grid that benefits both households and operators, favoring the enforcement of prosumers’ local market commitments while respecting the constraints defined by the operator. The proposed mechanism requires only one-to-all broadcast of price signals, which do not depend either on the amount of players or their local objective function and constraints, making the approach highly scalable. Its impact on distribution grid quality of supply was evaluated through load flow analysis and realistic load profiles, demonstrating the capacity of the mechanism ensure that voltage deviation and thermal limit constraints are respected.

0 534

09:00 Accueil des participants
09:30 Mot d’ouverture
Jean-Paul Chabard, Directeur scientifique, EDF R&D
09:45 Keynote « Faites entrer les objets connectés ! »
Damien Cauquil, Digital Security
10:30 Stockage et manipulation de données confidentielles dans un système embarqué
Guillaume Duc, Télécom ParisTech
10:55 — Pause café —
11:10 Protection des données à caractère personnel dans les services énergétiques
Franklin Leukam, EDF R&D – Télécom SudParis
11:40 Nouvelles architectures pour garantir la sécurité de bout-en-bout des services se basant sur l’IoT
Malcom Bourdon, EDF R&D – CNRS LAAS
12:10 — Pause-déjeuner —
13:45 Keynote « Enjeux économiques des données personnelles et des objets connectés »
Patrick Waelbroeck, Télécom ParisTech
14:30 Création assistée de règles de fonctionnement des équipements dans les logements connectés
Mingming Qiu, EDF R&D – Télécom ParisTech
14:55 — Pause café —
15:10 Embarquer l’IA dans les objets connectés pour expliquer à l’occupant le pilotage de son logement
Etienne Houzé, Télécom ParisTech
15:35 Tests d’OS open source pour transférer les données d’objets connectés vers Amazon Cloud AWS
David Menga, EDF R&D
16:00 Programme de recherche du laboratoire pour l’année 2019
Comité opérationnel de SEIDO LAB, EDF R&D et Télécom ParisTech
16:20 Mot de clôture
Gérard Memmi, Responsable du département Informatique et Réseaux, Télécom ParisTech
16:30 — Cocktail —


Le workshop a lieu le mardi 29 janvier 2019 à
EDF Lab Paris-Saclay
7 Boulevard Gaspard Monge
91120 Palaiseau, France

Ziad Ismaïl, Jean Leneutre, Alia Fourati

Proc. of the 14th European Dependable Computing Conference (EDCC), September 2018.
DOI: 10.1109/EDCC.2018.00030

Abstract: The management of security resources in a system always comes with a tradeoff. Given technical and budget constraints, the defender focuses on deploying the set of security countermeasures that offer the best level of system protection. However, optimizing the configuration and deployment of defense countermeasures for efficient attack detection and mitigation remains a challenging task. In this paper, we leverage the information present in an attack graph, representing the evolution of the state of the attacker in the system, to tackle the problem of finding the optimal security policy that offers the maximum level of system protection. Our solution can be used to assist asset owners to prioritize the deployment of security countermeasures and respond to intrusions efficiently. We validate our approach on an Advanced Metering Infrastructure (AMI) case study.

0 599

SAVE THE DATE

Mardi 29 janvier 2019

Nous avons le plaisir de vous convier à la 6e édition du Workshop du Laboratoire SEIDO qui aura lieu à

EDF Lab Paris-Saclay
7 Boulevard Gaspard Monge 91120 Palaiseau

Le programme détaillé vous sera annoncé prochainement.
Le Workshop est ouvert à tous sur inscription et dans la limite des places disponibles. Une invitation vous sera adressée à l’ouverture des inscriptions.

Ziad Ismaïl, Jean Leneutre, David Bateman, Lin Chen

Book chapter in Game Theory for Security and Risk Management
Stefan Rass, Stefan Schauer (Editors)
ISBN 978-3-319-75268-6

Abstract: In complex interdependent systems, the interactions between the attacker and the defender play an important role in defining the optimal defense strategy. In this context, game theory offers a mathematical framework to study interactions between different players with the same or conflicting interests. For example, Law et al. [20] investigate false data injection attacks on the power grid and formulate the problem as a stochastic security game between an attacker and a defender. Amin et al. [21] present a framework to assess risks to cyber-physical systems when interdependencies between information and physical systems may result in correlated failures.

In this chapter, we address the issue of the security risk management of interdependent communication and electric infrastructures in the smart grid by proposing an analytical model for hardening security on critical communication equipment used to control the power grid. Using noncooperative game theory, we analyze the behavior of an attacker and a defender. The attacker tries to compromise communication equipment to cause the maximum impact on the power grid. On the other hand, the defender tries to protect the power system by hardening the security on communication equipment, while taking into account the existence of backup control equipment in the communication infrastructure. In [22] and [23], we proposed an analytical model based on game theory for optimizing the distribution of defense resources on communication equipment taking into account the interdependencies between electric and communication infrastructures and defined a methodology to assess some of the parameters of the model. In this chapter, we make a number of extensions to this model in an attempt to answer the following questions: Is security by obscurity a good strategy for the defender? Under which conditions can a player guarantee a certain payoff? How can we strategically assess the initial security risk on communication equipment? Is deception required from the part of the defender to better protect the system? As we will see, while some of these questions can be analyzed analytically in the general case, some answers to these questions are system dependent and will therefore be analyzed in the case study. Throughout this chapter, the communication system refers to the telecommunication infrastructure responsible of controlling and monitoring the electric system.

José Horta, Daniel Kofman, David Menga, Mathieu Caujolle

Proc. of the ACM e-Energy Conference, Karlsruhe, Germany, June 2018.
DOI: 10.1145/3208903.3208937

Abstract: The limited capacity of distribution grids for hosting renewable generation is one of the main challenges towards the energy transition. Local energy markets, enabling direct exchange of energy between prosumers, help to integrate the growing number of residential photovoltaic panels by scheduling flexible demand for balancing renewable energy locally. Nevertheless, existing scheduling mechanisms do not take into account the phases to which households are connected, increasing network unbalance and favoring bigger voltage rises/drops and higher losses. In this paper, we reduce network unbalance by leveraging market transactions information to dynamically allocate houses to phases using solid state switches. We propose cost effective mechanisms for the selection of households to switch and for their optimal allocation to phases. Using load flow analysis we show that only 6% of houses in our case studies need to be equipped with dynamic switches to counteract the negative impact of local energy markets while maintaining all the benefits. Combining local energy markets and dynamic phase switching we improve both overall load balancing and network unbalance, effectively augmenting DER hosting capacity of distribution grids.

Sawsan Al Zahr

[Invited paper] Proc. of the IEEE MENACOMM Confrence, Jounieh, Lebanon, Apr. 2018
DOI: 10.1109/MENACOMM.2018.8371044

Abstract: Along with the growing penetration of renewable energy sources, demand side management (DSM) is becoming a key component of future energy systems such as smart grids. DSM aims at balancing the demand for power with intermittent renewable energy sources such as wind and solar units. DSM deploys various mechanisms to influence customer’s capability and willingness to modify their power consumption according to the utility’s energy production and the distribution capacity. DSM aims at either saving energy in sustainable manner (i.e. energy response) or/and shifting the time of energy use to off-peak hours (i.e. demand response). Indeed, DSM does not necessarily reduce the total customer’s power consumption but reshapes consumption patterns. Hence, DSM is expected to reduce the need for investments in networks and power plants in order to meet peak demands. In this paper, we propose an advanced demand response (DR) solution for individual households. Considering a household equipped with various domestic loads, we aim at optimally scheduling the day-ahead power consumption under timevariable rates while taking advantage of modular and deferrable loads, e.g. electric vehicle. Our proposal is numerically illustrated through real-life scenarios, elaborated using an existing simulator of human behavior regarding power consumption.

0 607
José Horta a soutenu sa thèse intitulée « Paradigmes et architectures innovantes pour l’avenir des réseaux
électriques de distribution soutenant la transition énergétique » le 16 avril 2018 où il a obtenu le grade de « Docteur de Télécom ParisTech » avec la mention Très honorable. La soutenance a eu lieu devant le jury composé de :

  1. M. Georg CARLE, Professeur, TU München, Allemagne – Rapporteur
  2. M. Georges KARINIOTAKIS, Professeur, MINES ParisTech, France – Rapporteur
  3. Mme. Ana BUŠIĆ, Chargé de Recherche, Inria, France – Examinatrice
  4. M. Gérard MEMMI, Professeur, Télécom ParisTech, France – Examinateur
  5. M. Philippe FUTTERSACK, Chef de groupe, EDF R&D, France – Invité
  6. M. Daniel KOFMAN, Professeur, Télécom ParisTech, France – Directeur de thèse
  7. M. David MENGA, Chercheur, EDF R&D, France – Encadrant industriel

Résumé de la thèse

Les futurs réseaux de distribution d’électricité devront héberger une part importante et croissante de sources d’énergies renouvelables intermittentes. De plus, ils devront faire face à des nouvelles variations des courbes de charge, dues notamment à une part croissante de véhicules électriques. Ces tendances induisent le besoin de nouveaux paradigmes et architectures d’exploitation du réseau de distribution, afin de fiabiliser les réseaux et assurer la qualité de fourniture d’électricité. Par ailleurs, ces nouveaux paradigmes vont permettre le développement des services innovants.

D’un côté, les gestionnaires de réseau s’appuieront de plus en plus sur des flexibilités fournies par des ressources énergétiques distribuées (flexibilités de consommation, stockage électrique, modulation des sources d’énergie) à cause de son potentiellement meilleur rapport coût-efficacité par rapport au renforcement des infrastructures. D’un autre côté, les consommateurs deviendront progressivement des prosumers (acteurs de leur consommation d’énergie) qui joueront un rôle actif dans la gestion de l’énergie des réseaux intelligents, en exploitant la flexibilité de certaines des équipements de leur logement (appareils électroménagers, batteries et panneaux solaires) pour moduler leur courbe de charge. L’Internet des Objets est un outil essentiel pour permettre aux logements de jouer un rôle actif, car il a poussé une nouvelle vague d’appareils connectés à la Smart Home et de services associés, dont le domaine de l’énergie peut devenir l’une des principales applications.

Dans cette thèse nous proposons une nouvelle architecture capable de favoriser la collaboration entre les acteurs du marché de gros, les gestionnaires de réseau de distribution et les clients finaux, afin de tirer parti des ressources énergétiques distribuées tout en prenant en compte les contraintes des réseaux de distribution. L’architecture est conçue pour fournir des services innovants de gestion de la demande résidentielle, avec un focus particulier sur les services liés à l’autoconsommation individuelle (au niveau d’un logement) et collective (à l’échelle d’un quartier). Dans le cadre de ces objectifs généraux, la thèse apporte trois contributions principales. D’abord, sur la base de l’Internet des Objets et de la technologie blockchain, la thèse fournit les éléments de base pour les futures architectures de
gestion de l’énergie au niveau du réseau de distribution. Ensuite, en focalisant sur les services rendus par de telles architectures, nous proposons un marché intra-journalier au pas horaire pour l’échange local de l’énergie renouvelable entre les logements, associé à un mécanisme d’allocation dynamique des phases afin d’améliorer la qualité de fourniture d’électricité. Finalement, nous proposons un mécanisme de contrôle en temps réel pour l’ajustement des transactions du marché vers des échanges finaux d’électricité qui respectent les restrictions posées par le gestionnaire du réseau électrique.

L’architecture et les mécanismes de gestion de la demande proposés visent à réduire les transits et les pertes et, par conséquent, à augmenter la capacité d’accueil des sources d’énergie renouvelables sur les réseaux de distribution basse tension. Les performances sont évaluées à l’aide de simulations de load flow basées sur des profils de charge réalistes. Elles fournissent des éléments utiles à la conception des futurs systèmes de gestion des réseaux de distribution.

Rayhana Bouali Baghli, Elie Najm, Bruno Traverson
Proc. of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), Jan. 2018.

Abstract: In the context of the Internet of Things (IoT), it is necessary to design services that are loosely coupled to the objects on which they act. We call these loosely coupled services generic services. Based on a previous work that defines a three-levelled architecture for the IoT, we first propose a declarative approach to the design generic services for the IoT. Then, based on this declarative description, we define service orchestrators which are high level services that are able to manage access conflicts of services to connected objects. Next, we describe consistency rules to check validity of a generic service or an orchestrator. Finally, we illustrate our approach with use cases around services in a smart home.

Sawsan Al Zahr, Elias A. Doumith, Philippe Forestier

Proc. of the IEEE Globecom Confrence, Singapore, Singapore, Dec. 2017
DOI: 10.1109/GLOCOM.2017.8255068

Abstract: As the global energy policy is changing from a demand-driven to a supply-driven approach, demand side management (DSM) is becoming a key component of future energy systems. Indeed, it helps power grids’ operators to balance the demand for power with intermittent renewable energy sources such as wind and solar units. DSM consists in optimizing/adapting the power consumption to meet the production through various methods such as improving the energy efficiency by using better equipment and materials, implementing demand response (DR) solutions, etc. DSM mechanisms do not necessarily reduce the total power consumption, but reshape the consumption pattern. Hence, DSM is expected to reduce the need for investments in networks and power plants in order to meet peak demands. In this paper, we propose an advanced DR solution for individual households. Considering a household equipped with various domestic loads, we aim at optimally scheduling the day-ahead power consumption under time-variable rates while taking advantage of modular and deferrable loads, e.g., electric vehicle. For this purpose, we propose an exact approach to solve the problem of energy management within a household under both system’s and user’s constraints. Our proposal is numerically validated through real- life scenarios, elaborated using an existing simulator of human behavior regarding power consumption.